
Climate Ocean Modeling on Parallel Computers
Ping Wang
Jet Propulsion Laboratory
California Institute of Technology
MS 168-522, 4800 Oak Grove Drive
Pasadena, CA 91109-8099, U.S.A.
wangp@rockymt.jpl.nasa.gov
http://www-hpc.jpl.nasa.gov/PEP/wangp

Benny N. Cheng
Jet Propulsion Laboratory
California Institute of Technology
MS 300-323, 4800 Oak Grove Drive
Pasadena, CA 91 109-8099, U.S.A.
bnc@pacific. jpl .nasa.gov
http://oceans-www.jpl.nasa.gov/hpcc/cheng.html

Yi Chao
Jet Propulsion Laboratory
California Institute of Technology
MS 300-323, 4800 Oak Grove Drive
Pasadena, CA 91 109-8099, U. S.A.
yc@comp.jpl.nasa.gov
http://comp.jpl.nasa.gov/-yc/YC/

Abstract:

Ocean modeling plays an important role in both understanding the current climatic
conditions and predicting future climate change. However, modeling the ocean
circulation at various spatial and temporal scales is a very challenging computational
task. In contrast to the atmosphere, where the dominant weather system has a spatial scale
of 1000s km, much of the ocean energy is associated with mesoscale eddies (equivalent
to the storms in the atmosphere) with a spatial scale of 100s km near the equator to 10s
km at high latitudes. With an order of magnitude smaller in both longitudinal and
latitudinal directions and a few time shorter in the temporal scale, a minimum ocean
model is at least 100 times more computationally demanding than a typical atmospheric
model. Implementing a well-designed parallel ocean code and improving the
computational efficiency of the ocean model will significantly reduce the total research
time to complete these studies. There are many challenges to design an efficient ocean
modeling code on parallel systems, such as how to deal with an irregular computing
geometry on a parallel system and how to port a code from one system to other systems.

mailto:wangp@rockymt.jpl.nasa.gov
http://www-hpc.jpl.nasa.gov/PEP/wangp
mailto:bnc@pacific.jpl.nasa.gov
http://oceans-www.jpl.nasa.gov/hpcc/cheng.html
mailto:yc@comp.jpl.nasa.gov
http://comp.jpl.nasa.gov/-yc/YC

This chapter reports on our efforts to implement an efficient parallel ocean model on
distributed memory and shared memory systems.

The computation domains of an ocean model is usually irregular. A simple method to
deal with irregular geometries is to use a rectangular geometry to approach the irregular
domain. In this case, many processors will be idle on land while other processors are
working on the ocean domain. For some applications, it will cause more than 30%
processors to be idle. We have developed a flexible partitioning technique for irregular
ocean geometries on parallel systems. It has 2D partitioning features and works on any
irregular geometry, and the communication pattern on the subdomains has been designed
as a virtual torus. MPI software is used for communication which is required when
subdomains on each processor need neighboring boundary data information. This
partitioning structure has dramatically saved computing resources, leading to a significant
speed up. Because of the portability of this software, the code can be executed on any
parallel system which supports MPI library.

We want to emphasize the portability of the ocean model across a variety of parallel
platforms, ranging from the most powerful supercomputers to the affordable desktop
parallel PC cluster (Beowulf-class system). To this end, we have successfully ported the
most widely used three-dimensional time-dependent ocean general circulation models to
various parallel systems, including the scalable parallel systems Cray T3E-600, the
shared memory system HP Exemplar SPP-2000, and the 16-node PC cluster Beowulf
system. Procedures on how to implement and optimize the code to different system are
discussed, and intensive comparisons of wallclock time with various grid sizes are made
among several parallel systems. Scientific results fiom a Atlantic ocean model with high
resolutions have been obtained using 256 processors on the Cray T3D.

Keywords:
ocean modeling, parallel computation, partition, parallel systems, irregular
geometries

1. INTRODUCTION

Ocean modeling plays an important role in both understanding the current climatic
conditions and predicting the future climate change. However, modeling the ocean
circulation at various spatial and temporal scales is a very challenging computational
task. In contrast to the atmosphere, where the dominant weather system has a spatial scale
of 1000s km and a temporal scale of weeks, much of the ocean energy is associated with
mesoscale eddies (equivalent to the storms in the atmosphere) with a spatial scale of 100s
km near the equator to 10s km at high latitudes and a temporal scale of days. With an
order of magnitude smaller in both longitudinal and latitudinal directions, a minimum

ocean model is at least 100 times more computationally demanding than a typical
atmospheric model.

Thus, it was not until recently that eddy-permitting (or eddy-resolving) calculations could
be carried out on a basin or global scale. Using the vector supercomputers (e.g., Cray
Y-MP) at National Center for Atmospheric Research (NCAR), decade-long ocean model
integrations have been carried out at 1/4 degree horizontal resolution [11, which was the
first ocean model with performance exceeding 1 billion
floating-point-operation-per-second (1 Gflopds). With the advance of massively parallel
computing technology, decade-long integrations at 1/6 degree resolution have been
conducted at Los Alamos National Laboratory (LANL) [2] and Jet Propulsion Laboratory
(JPL) [3] on the CM-5 and Cray T3D, respectively. Recently, a 10-year integration at
1 / 10 degree resolution was made at LANL using CM-5, and a six-year integration at 1 /12
degree resolution was made on the T3D at the Pittsburgh Supercomputer Center [4].
Despite the recent progress in eddy-resolving ocean modeling, it is apparent that we are
far from convergence in resolution, because each of these higher resolution calculations
show additional features that were not resolved in a coarser resolution model.
Furthermore, the increase of spatial resolution sometimes can even degrade the solution
at coarser resolutions, suggesting the need of more experimentation of eddy-resolving
models.

In this paper, we report on our experiences running one of the most widely used ocean
models on a variety of parallel computer systems. One of our objectives is to improve the
computational efficiency of the ocean model on parallel computers such that one can
reduce the time in conducting scientific studies. We also want to emphasize the
portability of the ocean model. Experiences of porting and optimizing the ocean model on
a variety of parallel systems are also described. With an efficient ocean model on
multiple platforms, one can maximize the limited computational resources available for
climate ocean modeling.

2. MODEL DESCRIPTION

The ocean model used in this study is among one of the most widely used OGCM code in
the community. The OGCM is based on the Parallel Ocean Program (POP) developed at
Los Alamos National Laboratory[2]. This ocean model evolved from the Bryan-Cox
3-dimensional primitive equations ocean model [5,6], developed at NOAA Geophysical
Fluid Dynamics Laboratory (GFDL), and later known as the Semtner and Chemin model
or the Modular Ocean Model (MOM) [7]. Currently, there are hundreds of users within
the so-called Bryan-Cox ocean model family, making it the most dominant OGCM code
in the climate research community.

The OGCM solves the 3-dimensional primitive equations with the finite difference
technique. The equations are separated into barotropic (the vertical mean) and baroclinic
(departures from the vertical mean) components. The baroclinic component is
3-dimensional, and uses explicit leapfrog time stepping. It parallelizes very well on
massively parallel computers. The barotropic component is 2-dimensional, and solved
implicitly. It differs from the original Bryan-Cox formulation in that it removes the
rigid-lid approximation and treats the sea surface height as a prognostic variable (i.e.,
free-surface). The free-surface model is superior to the rigid-lid model because it
provides more accurate solution to the governing equations. More importantly, the
free-surface model tremendously reduces the global communication otherwise required
by the rigid-lid model.

Building upon the original ocean model developed at LANL, the new JPL ocean model
has significantly optimized the original code [81. In that chapter, several optimization
strategies were described including memory optimization, effective use of arithmetic
pipelines, and usage of optimized libraries. The optimized code runs about 2.5 times
faster than the original code, which corresponds to 3.63 Gflops on the 256-PE Cray T3D.
A user-friendly coupling interface with the atmospheric or biogeochemical models was
also developed [91. Such a model improvement allows one to perform ocean modeling at
increasingly higher spatial resolutions for climate studies. In this chapter, we focus on
how to deal with an irregular computing geometry on a parallel system and how to port a
code from one system to other systems.

3. PARALLEL PARTITION ON IRREGULAR GEOMETRIES

In our present work, we chose the most widely used OGCM code as our base code. This
OGCM is based on the Parallel Ocean Program (POP) developed in FORTRAN 90 on the
Los Alamos CM-2 Connection Machine by the Los Alamos ocean modeling research
group. During the first half of 1994, the code was ported to the Cray T3D by Cray
Research using SHMEM-based message passing. Since the code on the T3D was still
time-consuming when large problems were encountered, improving the code
performance was considered essential. Recently much effort has been taken to optimize
this code [81. A detailed description about optimization strategies was reported in this
paper. Such a model improvement allows one to perform ocean modeling at increasingly
higher spatial resolutions for climate studies. But there are still many challenges for
ocean modeling on parallel systems. How to deal with an irregular computing geometry
on a parallel system is one of important issues we like to address in this paper.

Domain decomposition techniques are widely used in parallel computing community.
This method is simplely to split an original computation domain to N subdomains such
that each processor can just work on one subdomain. Once N processors are applied, a

significant speed up should be achieved-a total cpu time T is reduced to T/N. In order to
design a parallel code by use of the domain decomposition techniques, partition of a
computation domain is the first issue encountered. Computation domains of ocean
models are usually irregular. A simple method to deal with irregular geometries is to use
a rectangular geometry to approximate an irregular domain. In this case, a partitioning
structure can be easily designed according to a regular node mesh which can be a 1D,2D,
or 3D partition.

Here a simple 2D partition is given. For an M-by-N 2-dimensional partition, in which
(M*N).EQ. NPES (total processors), neighbors are to the north, south, east, and west.
The following example first converts MY-PE (current processor) to coordinates in the
abstract topology(2D torus):

I=MOD(MY-PE,M)

J=MY-PEM

The coordinate of MY-PE is the abstract topology is (1,J). I and J were chosen in such a
way that MY-PE.EQ.(I+M*J).

This kind of partitions gives a 2D mesh which divides a rectangular domain to M*N
subdomains such that each processor only needs to work on one subdomain. But for
ocean modeling, there are nearly no rectangular geometries. If this simple 2D partition is
applied, computing efficiency will deteriorate as some processors are idle on non-ocean
domains which are inside the 2D mesh domain. For instance, the original POP code' used
a 2D partition to divide the 3D ocean domain into subdomains in a rectangular computing
geometry. Figure 1 shows the 2D partition on the North Atlantic ocean. Here about 36%
of the processors are idle on land while other processors are working on the ocean
domain. So designing a flexible partitioning structure, which works only on ocean area,
will dramatically save computing resources, leading to significant speed up via an
efficient partition.

Recently we have developed a new irregular partitioning structure for ocean modeling. In
order to achieve load balance, and to exploit parallelism as much as possible, a general
and portable parallel structure based on domain decomposition techniques is designed for
the three dimensional ocean domain. It has 2D partitioning features and works on any
irregular geometry, and the communication pattern on the subdomains has been designed
as a virtual torus. MPI software is used for communication which is required when
subdomains on each processor need neighboring boundary data information. Because of
the portability of this software, the code can be executed on any parallel system which
supports MPI library.

The main idea of this approach is to eliminating idle processors from the original 2D
rectangular partition and to find the nearest neighboring processors which are active.
Assume NPES are used for computation by use of a rectangular 2D mesh MxN. Since we
know the irregular ocean topography G, it is easy to calculate total idle processors K
caused by the 2D mesh. A target of total processors should be equal to NPES-K if all
processors only work on ocean domain. Now the major problem is how to find locations
of the nearest neighboring non-idle processors for each active processor. A detailed
procedure of locating neighboring processors is given in the following.

a . Given an original total number of processors NPES, 2D mesh MxN, ocean topography
G, Calculate total idle processors K and get a new target number of total processors
NEWPES.

b. Calculate idle processors mesh IDLE as the following:

IDLE(ij)=O if processor is active

IDLE(ij)=l if processor is idel

Here i j are index for the original 2D mesh.

c. For each PE, calculate the total number of idle processors which index are smaller than
MY-PE(i,j), and save as ITOTAL(i,j).

d. Calculate neighboring processor’s locations for each PE by

EAST=MY-PE(i+ 1 j)-ITOTAL(i+ 1 j)

WEST=MY-PE(i- 1 J’)-ITOTAL(i- 1 j)

NORTH=MY-PE(i,j+ 1)-ITOTAL(iJ’+ 1)

SOUTH=MY-PE(i,j- 1)-ITOTAL(ij-1)

e. Modify boundary conditions and other input data files.

f. Perform ocean modeling on MPES-K processors by use of new neighboring
information computed in (d) and MPI software for communication.

The above procedure is very straight forward, efficient, and easy to use. We have
successfully applied this procedure to the ocean modeling code for the North Atlantic

Ocean (Figure 2), and it gives excellent results. All idel processors are eliminated, and
the computing efficiency has been improved by 36%. This simple approach can be easily
used to any problem which has an irregular computing domain and parallelized by
domain decomposition techniques on parallel systems, and it leads significant speed up.

KM

Figure 1. The original 2D partition on the North Atlantic ocean.

-4,o - 3.2 -2.4 -1,6 -0.8 0,O
KM

Figure 2. The new 2D partition on the North Atlantic ocean.

4. PARALLEL COMPUTATION ON VARIOUS SYSTEMS

Three-dimensional time-dependent ocean models require a large amount of memory and
processing time to run realistic simulations. The significant computational resources of
massively parallel supercomputers promise to make such studies feasible. But the
dedicated cpu time needed by the user to run the model is quite limiting, as most systems
are shared by multiple users, and access to an alternative system should ease the
computational traffic jam. Therefore, we need to make the code portable to various
systems in order to take advantage of various available computing systems.

4.1 Parallel systems

In order to port the ocean code to different systems, understanding current advanced
parallel systems, ranging from the most powerful supercomputers to the affordable
desktop parallel PC cluster (Beowulf-class system), is necessary. Here four typical
parallel systems, the Cray T3D, the Cray T3E, the HP SPP2000, and the Beowulf cluster
system, are considered. A brief description of those systems, which are the major
computing resources used for the present study, is given here. Major features for each
system are summerized in Table 1.

The Cray T3D at Jet Propulsion Laboratory (JPL), a scalable parallel system, has 256
compute nodes with 150 Mflops peak performance and 64 Megabytes memory per node.
Logically, it has a shared memory, and physically a distributed memory, associated with
a processor.

The Cray T3E at the Goddard Space Flight Center, currently one of the most powerful
MIMD computers available, has 1024 compute nodes with 600 Mflops peak performance
and 128 Megabytes memory per node. It is a scalable parallel system with a
distributed-memory structure. This machine improves application performance by three
to four times over that of the previous generation Cray T3D.

The 256 HP SPP2000 (Exemplar) at JPL and California Institute of Technology has 16
hypernodes, with each hypernode consisting of 16 PA-8000 processors and a single pool
of 4 GB of shared physical memory. The overall architecture of the Exemplar is a
hierarchical Scalable Parallel Processor(SPP). The topology of the 16 hypernodes
connected by CTI(Coherent Toroidal Interconnect) is a 4x4 toroidal mesh. The Exemplar
supports a variety of programming models including global shared memory programming
models and explicit message passing models.

The Beowulf system at JPL, has 16 processors interconnected by 100 base T Fast
Ethernet. Each processor includes a single Intel Pentium Pro 200 MHz microprocessor
which has a peak speed of 200 Mflops, 128 Megabytes of DRAM, 2.5 GBytes of IDE
disk, and PC1 bus backplane, and an assortment of other devices. It is a loosely coupled,
distributed memory system, running message-passing parallel programs that do not
assume a shared memory space across processors.

All those systems support a Fortran 90 compiler and MPI software. The Beowulf system
at JPL runs the Linux operating system, and NAG Fortran 90 compiler is installed in this
system. Other systems run their own operating systems and Fortran 90 compilers. Since
all above systems support explicit message passing models, theoretically, any Fortran 90
code designed by the domain decomposition techniques and MPI software should be able
to execute on those system.

C~

Platform Total nodes Mflops each node

Beowulf 16

64 GB total 720 256 HP Exemplar SPP-2000
128 MB /node 600 1024 Cray T3E-600
64 MB /node 150 256 Cray T3D
128 MB /node 200

Table 1. Parallel computing systems.

Recently we have ported the North Atlantic POP code to several distributed memory and
shared memory systems, including the four systems described above. Porting a code to
different systems needs some basic knowledge about the hardware and its software as
well. The ocean code runs well on some platforms, such as CM-2 Connection Machine,
but it was not a simple issue to compile and run the ocean code on a new system. Recent
developed compilers for each parallel system have much more strict rules for source
codes comparing with earlier developed compilers. To run the ocean code on recently
developed computing systems produces challenges. Each compiler on each system has its
own features, so some modifications for makefile files and source codes are required for
porting a code from one system to another. Many problems were encountered during the
process of porting the code, and some major problems are reported in the following.

The compilation of ocean code on various parallel systems was the first problem
encountered. Many error messages were generated at the initial compilation on a new
system. Problems also vary on each systems. Details for porting the code from one
system to another system are described in the following.

4.2 Ocean modeling on the Cray T3E

During the process of porting the optimized POP code from the Cray T3D [81 to the
Cray T3E, Several problems were encountered at the initial compilation. First, the
assembler code for the Cray T3D could not used for the Cray T3E; it had to be replaced
by Fortran calls. This was easily accomplished by utilizing some of the fortran calls
originally written for the CM5 machine. Most of the assembly calls originated in the
stenci1s.f routines, and the replacement Fortran codes were subsequently optimized for
the Cray T3E. After other changes of the source code, the code was compiled
successfully. But the code ran slower than that on the Cray T3D, which was far behind
the estimated speed up on the Cray T3E. Theoretically, the Cray T3E should improve
application performance by three to four times over that of the previous generation Cray
T3D because of the the hardware differences. This is due to the replacement of the
assembler code with Fortran calls, and the entire code was not optimized on the Cray
T3E.

Next, optimization of the code was considered for improvement of code performance.
The STREAMS environment was turned on via the setenv STREAMS = 1 . This
resulting in timing runs par with the optimized T3D code. At the same time, the
optimization options "-scalar3 -unroll3" were used; changes were made for BLAS (fast
math) routines by use of shmem calls as the BLAS library is not optimized on the Cray
T3E. At this stage, the updated code ran about two times faster than the code on the Cray
T3D.

Another major speedup was obtained by replacing all the default double precision reals
with single precision reals. This was done using a script to automate the conversion, and
resulting in another 50% increase in FLOPS performance. After all those modifications,
the code ran about four times faster than the code on the Cray T3D. The final version was
tested for an application on the North Atlantic region. It was running successfully; results
are given in the next section.

4.3 Ocean modeling on the HP SPP2000

Porting the POP code from the standard distribution at LANL to the HP SPP2000 was
also considered. The POP code with MPI version developed for the SGI machine was
taken as the basic code. Since the code contains mixed single and double precision
variables, it might cause some problems when MPI calls are used. Implementation of all
variables as double precision (real*8) variables was necessary. A script was written to
convert all single precision variables to double precision ones. Subroutine SIGNAL calls
were replaced by function calls instead. Calls to SGI timer routines were replaced by
corresponding calls to MPI timers. IO routines were modified to reflect the MPI topology
specified in the ocean model setup. Finally, specific HP X-class exemplar compiler's
optimization options +DA2.0N +DS2.0a -03 +Oaggressive +Odataprefetch" were
applied to speed up the code. The modified code ran well on this system, and results are
given in the next section.

4.4 Ocean modeling On the Beowulf system-PC clusters

The code for the HP SPP2000 was also ported to the Beowulf cluster system running on
Linux. The NAG Fortran 90 compiler was used. Options I' -mismatch-all -dusty" had to
be applied for compilation. Minor changes for the source code were made, such as the
signal calls and timing calls. Double precision was applied for all REAL variables. After
those modifications, the code was compiled successfully. Then the Option "-0" was used
for automatical optimization to improve the code performance, and it ran well on the
Beowulf system.

4.5 Code performance and discussion

Currently the ocean code has been successfully ported to several parallel systems. No
doubt, besides understanding an original code, some knowledge of new compilers and
new computers will save plenty of time to port an existing large code to a new computing
platform. After all those efforts, the POP code with the new partition, with a virtual torus
topology described in the previous section, executes well on the HP SPP2000, the Cray
T3E, T3D, and the Beowulf system, and it is easy to be ported to any parallel system
which supports MPI software.

Various code performance tests have been carried out among those systems. In order to
maximize the performance of the ocean code, the use of parallel software tools and
compiler options have been fully explored. For example, on the HP Exemplar the options
” -03 +Oaggressive +Odataprefetch ” are used for runing the ocean code. In order to
compare the performance on each system, 16 processors are used for the parallel code
due to the current maximum number of nodes on the JPL Beowulf system. Here a model
with grid sizes 180x180x20,360x180x20,360x360x20, and 720x360~20 is tested on
those machines.

The results are shown in Figure 3, which lists the wallclock time at fixed time steps on
the test problem for the four systems described earlier. The HP Exemplar gives the best
performance, and the Cray T3E shows better performance than the Cray T3D and the
Beowulf. But it is interesting to note that the 16-node Beowulf system is slightly faster
than the Cray T3D, and the difference is growing with the grid size used. This is due to
each PC of the Beowulf system is faster than the Cray T3D single node, but the
communication on the Beowulf is slower than that on the Cray T3D. Overall, for a
moderate grid size like 180x180~20, the communication plays a significant role. Hence,
the discrepancy in time for the entire computation on the four systems depends on the
difference in the network connections and the hardware. Once the grid size increases, the
computation becomes dominant. Then the discrepancy in time is more consistent with the
differences in the hardware.

8110

700

600

200

I I I I

1 2 3 4

Figure 3. Ocean modeling on different parallel systems with various grid sizes
(1: 18Ox18Ox20,2: 36Ox18Ox20,3: 36Ox36Ox20,4: 720x360~20).

As shown in Figure 3, the results on the Beowulf system are very promising: the code
runs slightly faster than that on the Cray T3D and also reaches half the speed of the Cray
T3E and HP Exemplar. These results are very interesting for the scientific computing
community because of the low cost of the Beowulf system. Right now, the Pentium I1
300 Mhz or 400 Mhz is available, and a faster network at gigabits rate of transfer instead
of 100 mbits is available at a reasonable price. More importantly, the price for these
commodity products will drop dramatically with time, so it is a very cost effective way to
perform large-scale scientific computing. It is quite feasible to build a dedicated Beowulf
parallel system for a specific application such as ocean modeling at a fraction of the price
for commercial parallel systems.

5. SCIENTIFIC RESULTS

Using 256-processor Cray T3D, we have conducted a 40-year integration of a Atlantic
ocean model with a spatial resolution of 1/6 degree and 37 vertical level. Figure 4 shows
a snapshot of the 3-D volume of the velocity The detailed description of the visualization
method is described in [91. From Figure 4, it is seen that the water originated in the
tropics is carried northward by the western boundary current. It passes through the
Caribbean Sea, the Gulf of Mexico, the Florida Straits, and subsequently the Gulf Stream.
Along the way, the strong western boundary current produces mesoscale eddies. This
western boundary current plays a key role in the heat transport in the North Atlantic
ocean. Currently, we are coupling this 1/6 degree Atlantic Ocean model with a global
atmospheric model on the Cray T3E. With the much bigger memory on the HP
SPP-2000, it is anticipated that we can run'a 1/12 degree Atlantic Ocean model.

Figure 4.Snapshot of the 3-D volume of the velocity.

The velocity magnitude is linearly mapped to a spectrum color map with purple for the
lowest value and red for the highest value. The opacity of the voxel is also linearly
determined by the velocity. The voxels with high velocity are more opaque and the ones
with low velocity are mostly transparent. The white contour map underneath the 3-D
velocity is the ocean floor topography.

In a regional application, we have studied the temporal and spatial evolution of mesoscale
eddies in the Gulf of Mexico and the Caribbean Sea(Figure 5) . The eddies in the
Caribbean Sea are quite regular, appearing about every 2-3 months. The eddies in the Gul
of Mexico, on the other hand, are found about every 10 months. In comparison with
observations, the above described 1/6 degree North Atlantic ocean model is able to
reproduce major features of these eddies in the Gulf of Mexico and Caribbean Sea,
including their amplitudes, spatial and time scales, and propagation speed. Accurate
description and understanding of these eddies in the Gulf of Mexico and Caribbean Sea
are crucial for coastal monitoring and forecasting, which are of great benefit to regional
fishery and oil industries.

Figure 5. The sea surface height over the Gulf of Mexico and the Caribbean Sea
simulated by the 1/6 degree Atlantic Ocean model.

6. CONCLUSIONS

In the present study, we have developed an efficient, flexible, and portable parallel
partitioning structure which can be used for any irregular ocean geometry. This feature
allows us to study various ocean problems with different geometries on parallel systems.
We have also successhlly ported the ocean code to various distributed memory and
shared memory systems. Detailed description of porting the ocean code from one system
to another system has been reported. The comparison of wallclock time for fixed time
steps among these systems gives very usehl information on the speedup performance of
these advanced hardware systems. The discrepancy of the time on these systems is due to
the difference of the hardware on each system, and the network connection used. The
code scales very well on different system as the problem’s size increases with a total
fixed number of processors. The code can be easily ported to any parallel system which
supports a Fortran 90 compiler and MPI software, in particular, the Beowulf system (pile
of PCs) makes high resolution ocean computing a reality to the low cost parallel
supercomputing community. Interesting scientific results have been obtained from the
North Atlantic ocean model using a large number of processor. In spite of the difficulties

associated with high resolution simulation of ocean model, our present results illustrated
here clearly demonstrate the great potential for applying our current approach to solving
much more complicated ocean flow in realistic, time-dependent, three-dimensional
geometries using parallel systems with large gird sizes.

References

1. A.J. Semtner and R.M. Chervin, Ocean-General Circulation from a Global
Eddy-Resolving Model, J. Geophys. Research Oceans, 97,5493-5550, 1992.

2. R.D. Smith, J.K. Dukowicz, and R.C. Malone, Parallel Ocean General Circulation ,

Modeling, Physica D, 60, 38-61, 1992.

3. Y. Chao, A. Gangopadhyay, F.O. Bryan, W.R. Holland, Modeling the Gulf Stream
System: How Far From Reality?, Geophys. Res. Letts., 23,3 155-3 158, 1996.

4. R.D. Smith, Los Alamos National Laboratory, and E. Chassignet, University of Miami,
1998, personal communication.

5. K. Bryan, Numerical Method for the Study of the World Ocean Circulation, J.
Comp. Phy., 4, 1687- 17 12, 1969.

6. M.D. Cox Primitive Equation, 3-Dimensional Model of the Ocean, Group Tech.
Report I , GFDL/NOAA, Princeton, NJ, 1984

7. R. Pacanowski, R.K. Dixon, and A. Rosati, Modular Ocean Model User’s Guide,
GFDL Ocean Group Tech. Report 2, GFDLNOAA, Princeton, NJ, 1992.

8. P. Wang, D. S. Katz, Y. Chao, Optimization of a parallel ocean general circulation
model, in the proceedings of the Super Computing 97, San Jose, California, November,
1997.

9.Yi Chao, P. Peggy Li, Ping Wang, Daniel S. Katz, and Benny N. Cheng, Ocean
modeling and visualization on a massively parallel computer , in Parallel Computing
for Industrial and ScientiJic Applications, Morgan Kaufman, 1999.

Author Biography

Ping Wang is a Computational Scientist in the Jet Propulsion laboratory, California
Institute of Technology. Her research interests include large-scale scientiJic

computations, parallel computations in fluid dynamics, parallel software design, and
numerical methods (Jinite volume, finite difference, Jinite element, multigrid) for PDE.
She received her Ph.D. in Applied Mathematics from the City University, London, U.K.,
1993. She recently received the best paper award(with Daniel S. Kats and Yi Chao)at
s c97

Benny N. Cheng a Scient@ Data Analyst in Earth and Space Science Division of JPL.
His interests include numerical analysis of remote sensing data, ocean modeling, and
computer visualization. He received his Ph.D. in Mathematics from MIT in 1987, and his
Ph.D. in Statistics from UCSB in 1994. Prior to joining JPL in 1996, he was a National
Research Council Resident Research Associate.

Yi Chao is a Research Scientist in the Earth and Space Science Division of JPL. He has a
M.A. and Ph.D. degree in Atmospheric and Oceanic Sciences from Princeton University.
Before joining JPL in 1993, he was a post-doctoral fellow in UCLA 's Department of
Atmospheric Sciences. His research interests are in ocean modeling, satellite
remote-sensing of the ocean, air-sea interaction and high-performance computing. In
1996, he received the Lew Allen Award for excellence from JPL, and recently he received
the best paper award(with Ping Wang and Daniel S. Kats) at SC97

